Compressor stations & health risks: Moving New Jersey in the wrong direction

> Curtis Nordgaard, MD MSc Pediatrician Dorchester MA

Fore River Residents Against the Compressor Station Massachusetts Health Care Providers Against Fracked Gas

For today:

Basics of how a compressor station works

What pollution comes out of a compressor station?

What are the health risks?

CS + Health: Strength of evidence

Health effects associated with CS

>>>

Pollution known to be released by CS

Studies on health effects of air pollution

>>>

Estimate effects from CS pollution

>>>

Suspected pollution, health issues not yet addressed

New Jersey: "The Pipeline State"

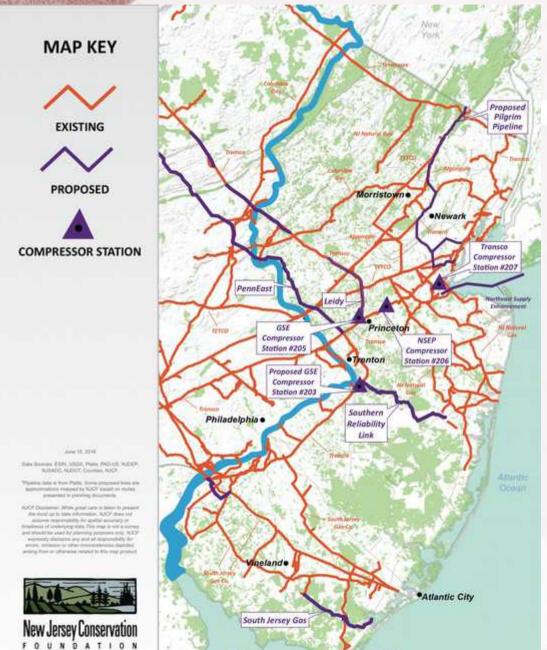
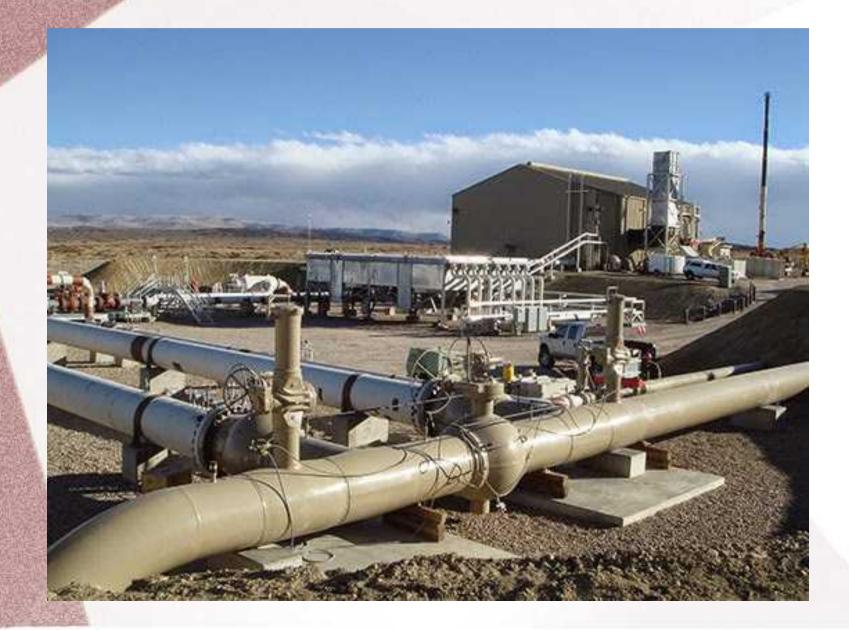



Image courtesy New Jersey Conservation Foundation & Patty Cronheim

Compressor stations

A Solar Taurus compressor engine

Typical compressor station equipment

Compressor engine & turbine Dehydrator, filter, separator Condensate storage tank Gas heater & cooler Backup generator Pipeyard

How does a compressor station generate pollution?

Burn gas in compressor
Vent gas (blowdown, shut down, emergency venting)
Leak gas under high pressure system
Vent condensate from tanks
Noise

For today:

Basics of how a compressor station works

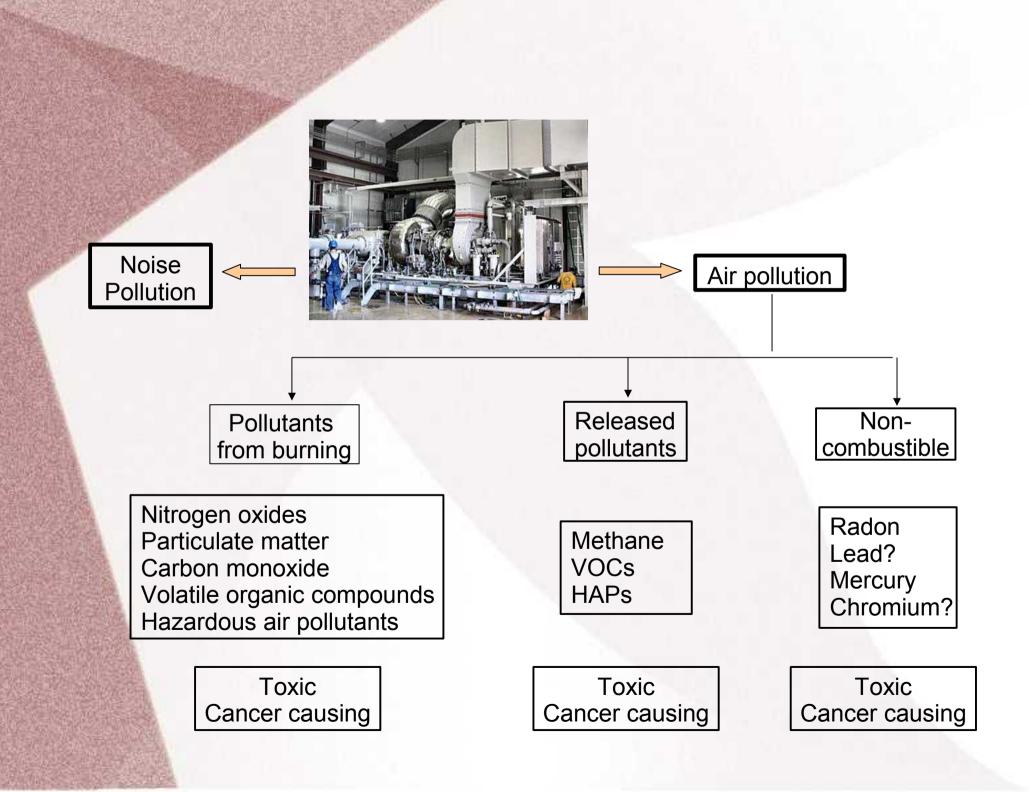
What pollution comes out of a compressor station?

What are the health risks?

What comes out of compressor stations?

Definitely

Noise


Nitrogen oxides, particulate matter, carbon monoxide, volatile organic compounds, hazardous air pollutants (formaldehyde, benzene, etc)

Radon

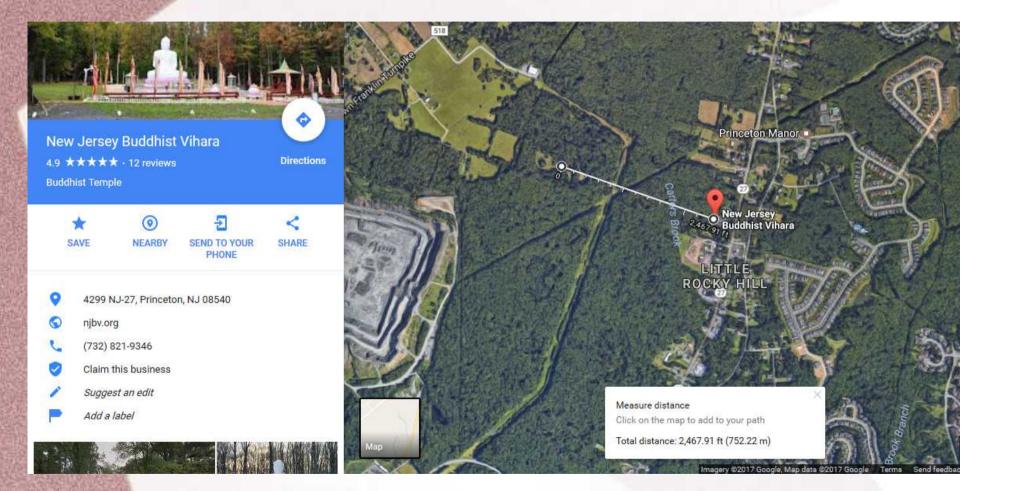
Likely or possible

Mercury, (radioactive) lead, chromium Secondary formation

Ozone, particulate matter

Compressor station noise: Neighbors' anecdotes

It tends to vent at night It rattled the dishes in the cupboards It sounds like a jet engine One event lasted several hours and sounded like a loud jet engine several miles away


Compressor stations: Noise

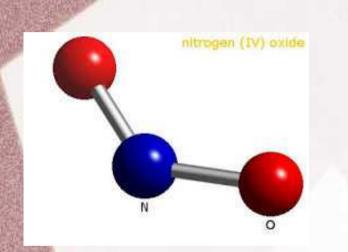
The noise and vibration emanating from the Burrillville [facility] is extremely disruptive to my husband and me and has negatively impacted our ability to sleep, enjoy our property and our health. My husband is a one-hundred percent disabled Vietnam Veteran and his health and survival relies on him getting good quality sleep, not to mention reduced stress levels. As a result of the continued noise and vibration his sleep pattern is negatively impacted and his stress level as a result has increased to a point where his cardiologist has told me not to have him get stressed over this situation. That is easier said than done when faced with the noise and vibration problem on a daily basis.

.....The current noise occurs on almost a daily basis and ranges from a constant drone similar to a diesel truck parked idling in my driveway to a loud – jet plane running. At times it sounds like a jet plane has taken off. When this occurs, the noise is extremely loud and lasts for several minutes. The noise cycles between the diesel truck idling to the jet plane taking off and can last for several hours.¹⁹

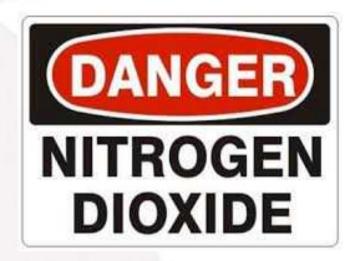
Rhode Island Department of Health, Energy Facility Siting Board Advisory Opinion, Clear River Energy Center. Sept 12, 2016. P 14.

Compressor noise + meditation center

What are VOCs?

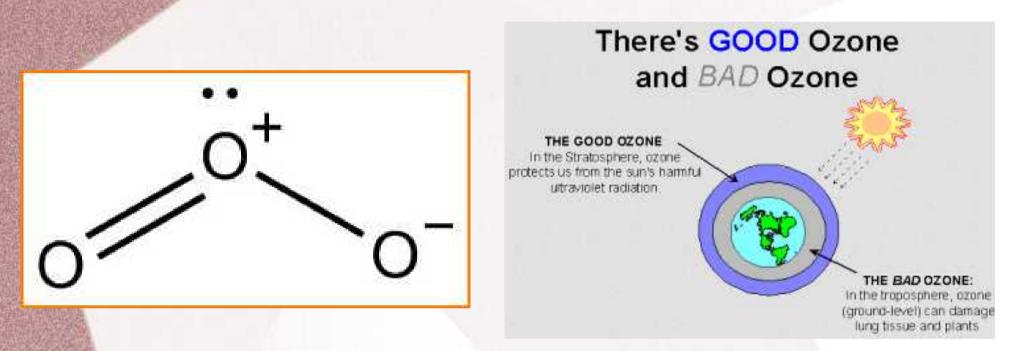

Volatile: Airborne Organic: Carbon based Compounds: Molecules

Examples:


Propane, butane, ethanol naphthalene*, benzene*, formaldehyde*

* Also categorized as hazardous air pollutants

Nitrogen dioxide



Toxic $NO_2 + VOC = Ozone, smog$

Ground level ozone "can damage lung tissue and plants"

Particulate matter

PM25 particles Human <2.5 µm each hair 50 µm Finest beach sand 90 µm PM₁₀ particles <10 µm each

> Organic compounds, metals Delivery system to the lungs Toxic

CS 206 air pollution: Details in March?

Pollutant	Annual Compressor Station 206 Potential-to- Emit (tpy)
со	TBD
NOx	TBD
voc	TBD
PM ₁₀	TBD
PM _{2.5}	TBD
SO₂	TBD
CO2e	TBD
Total HAPs	TBD

Transcontinental Gas Pipe Line Co. (Nov 2016). Northeast Supply Enhancement Project Draft Resource Report 9: Air Quality and Noise. Table 9.2-1, p 9-7.

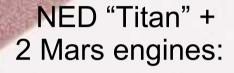
The Mars 100 compressor: CS206 vs NED

New Compressor Station 206

 Construction of a new 32,000 horsepower (hp) compressor station and related ancillary equipment in Franklin Township, Somerset County, New Jersey, with two Solar Mars® 100 (or equivalent) natural gas-fired, turbine-driven compressors. The preferred location for Compressor Station 206 has not yet been selected.

Station	Model	Rated Capacity ¹	ISO Rating ²
Supply Path Head	Titan 130-20502S	19,443 hp	20,500 hp
	Mars 100-16000S	15,181 hp	16,000 hp
	Mars 100-16000S	15,181 hp	16,000 hp

32,000 hp (Mars 100 x2) = 61% of 52,500 hp


Tennessee Gas Pipeline Company (Nov 2015). Northeast Energy Direct Project. Resource Report 9, Table 9.1-16, p 9-30.

NED

Toxic air pollutants: Tons per year

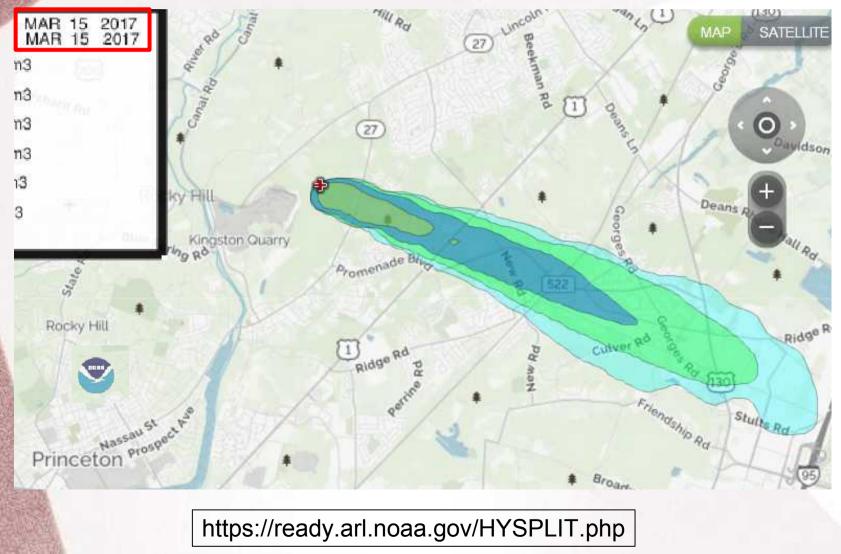
2.6

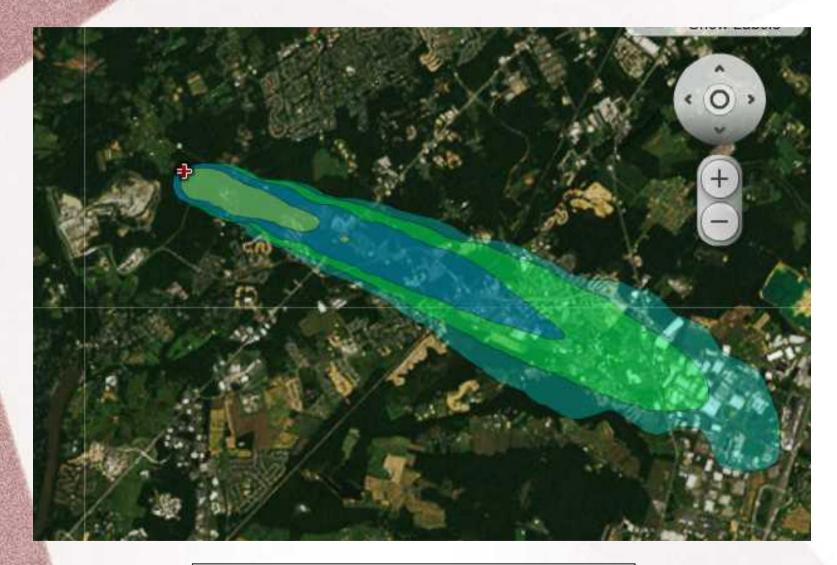
Equipment	Tons per Year							
	NO1	CO	SO ₂	PM10	PM25	VOC ²	GHG ³	HAPs ⁴
Total	66.60	86.17	25.02	11.96	11.96	22.42	215,460	4.20

 Total x 61%
 40.6
 52.6
 15.3
 7.30
 7.30
 13.7
 131,430

Tennessee Gas Pipeline Company (Nov 2015). Northeast Energy Direct Project. Resource Report 9, Table 9.1-17, p 9-32.

Air pollution: Dispersion



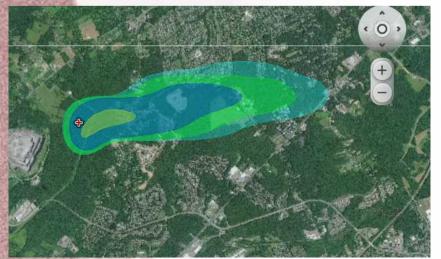


Where will the pollution go?

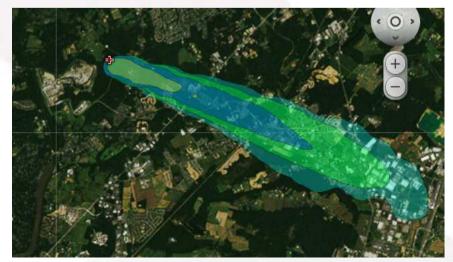
NOAA HYSPLIT Model

Where will the pollution go?

https://ready.arl.noaa.gov/HYSPLIT.php


Where will the pollution go?5 20165 2016

June 15 2016



Dec 15 2016

Mar 15 2017

EPA air quality standards: NAAQS

Table 9.2-7 National Ambient Air Quality Standards

Pollutant	Averaging Period	Primary Standard	
CO	8-hour ^a	9 ppm (10,000 µg/m ³)	
	1-hour ^a	35 ppm (40,000 μg/m ³)	
Lead	Rolling 3-month ^b	0.15 µg/m ³	
NO ₂	Annual ^b	53 ppb (100 μg/m ³)	
	1-hour ^c	100 ppb (189 µg/m ³)	
Ozone	8-hour ^d	0.075 ppm	
PM ₁₀	24-hour ^e	150 µg/m ³	
PM _{2.5}	Annual ^f	12.0 µg/m ³	
	24-hour ^g	35 µg/m ³	
SO ₂	3-hour ^a		
	1-hour ^{h,i}	75 ppb (195 µg/m ³)	

Ambient air quality around CS206 site

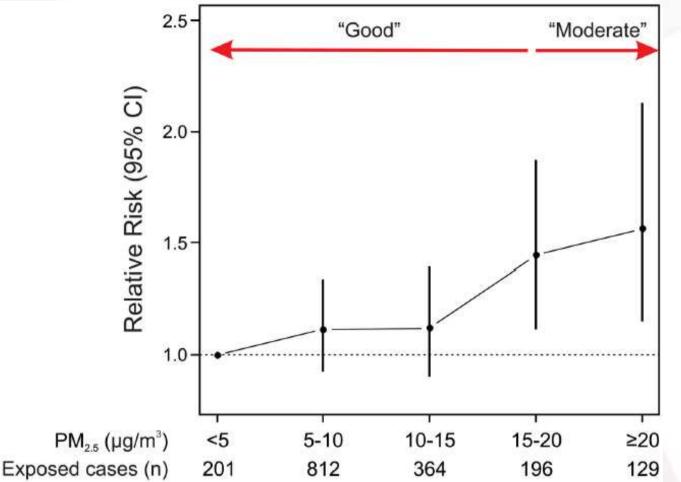
ollutant	Averaging Period	Monitor Site	Monitor Value
CO	8-hour ^a	AQS 34-039-0004 Elizabeth NJ	1.8 ppm
	1-hour ^a		2.4 ppm
Lead	Rolling 3-month	AQS 42-101-0014 Philadelphia PA	0 µg/m ³
NO ₂	Annual ^b	AQS 34-023-0011 East Brunswick NJ	10.25 ppb
	1-hour ^c		45 ppb
Ozone	8-hour ^d	AQS 34-023-0011 East Brunswick NJ	0.073 ppm
PM _{2.5}	Annual ^e	AQS 34-023-0006 North Brunswick NJ	8.0 µg/m ³
	24-hour ^c		19.7 µg/m ³
PM ₁₀	24-hour ^a	AQS 42-101-0048 Philadelphia PA	64 µg/m ³
SO ₂	3-hour ^a	AQS 34-039-0004 Elizabeth NJ	29 ppb
	1-hour ¹		14 ppb

45% of NAAQS 97% of NAAQS 67% of NAAQS

Transcontinental Gas Pipe Line Co. (Nov 2016). Northeast Supply Enhancement Project Draft Resource Report 9: Air Quality and Noise. P 9-20.

Local impacts from a 52,500 hp station

Pollutant	Averaging Period	SIL (µg/m³)	Maximum Conc. for SIL Analysis ¹ (µg/m³)	Significant Impact Area (SIA) (km)
NO J	1-hour	7.5	39.36	6.67
NO ₂ ³	Annual	1	1.18	0.13
со	1-hour	2000	30.83	NA
	8-hour	500	21.28	NA
PM10	24-hour	5	3.14	NA
DM	24-hour	1.2	3.03	0.20
PM _{2.5}	Annual	0.3	0.58	0.16
SO ₂	1-hour	7.8	20.63	1.89
	3-hour	25	13.69	NA


Tennessee Gas Pipeline Company (Nov 2015). Northeast Energy Direct Project. Resource Report 9, Table 9.1-18, p 9-34.

NAAQS and 52,500 hp station: No problem?

Pollutant	Averaging Period	Modeled Design Conc. for NAAQS ² (µg/m³)	Ambient Background (µg/m³)	Total Impact (μg/m³)	NAAQS (µg/m³)
	1-hour	28.77	75.8	104.6	188
NO ₂ ³	Annual	1.18	20.0	21.2	100
со	1-hour	30.32	2,061	2,091	40,000
	8-hour	20.63	1,603	1,623.6	10,000
PM10	24-hour	2.94	45.0	47.9	150
DM	24-hour	2.59	22.3	24.9	35
PM _{2.5}	Annual	0.58	9.5	10.1	12
SO ₂	1-hour	17.19	21.0	38	196
	3-hour	12.45	21.0	33.4	1,300

Tennessee Gas Pipeline Company (Nov 2015). Northeast Energy Direct Project. Resource Report 9, Table 9.1-18, p 9-34.

PM2.5 below NAAQS: More strokes

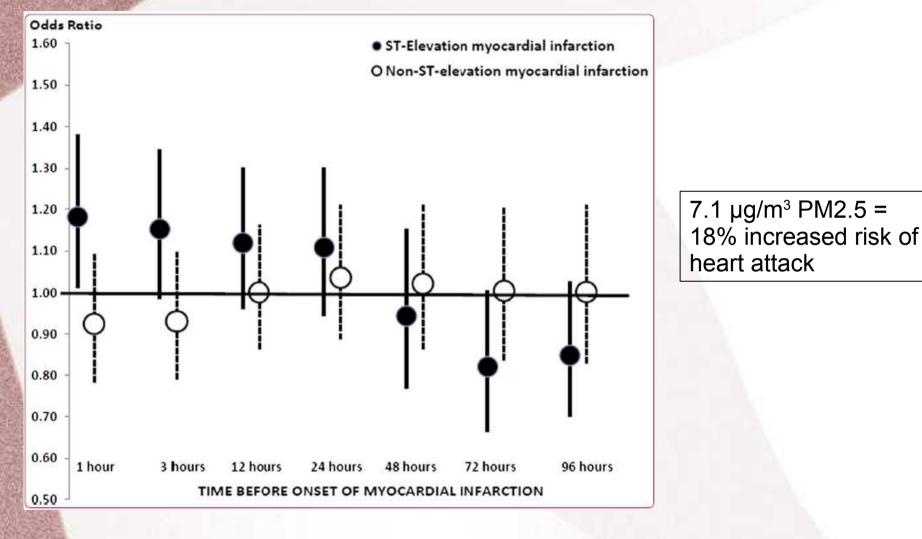


Figure 1.

Odds ratio of ischemic stroke onset for categories of mean PM_{2.5} levels in the 24 hrs preceding stroke onset.

Wellenius, GA, et al. (2012). Archives of Internal Medicine, 172(3): 229-234.

Shorter (1 hr) averages: More heart attacks

Gardner, B et al (2014). Particle and Fiber Toxicology, 11:1.

For today:

Basics of how a compressor station works

What pollution comes out of a compressor station?

What are the health risks?

Assessing health risks: Types of data

Public health/epidemiology <<Not available>> Surveys Symptoms Pollution Change in pollutant concentration

Self-reported symptoms near compressor station

Health surveys of 35 residents within ~1 mile of a new compressor station (Minisink NY; 12,260 hp)

Symptoms:

Respiratory & nosebleeds: 63% Headaches: 34%

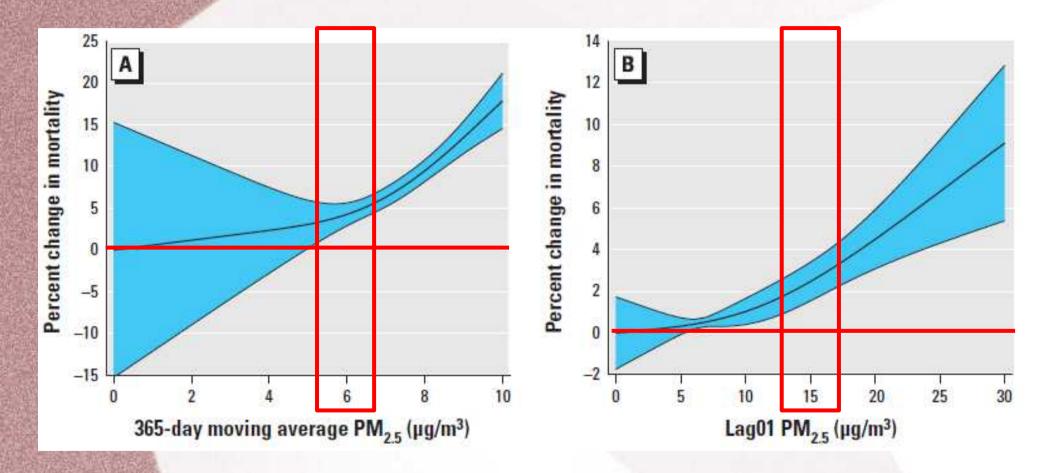
Rash: 29%

Southwest Pennsylvania Environmental Health Project (2015). Summary of Minisink monitoring results. http://www.environmentalhealthproject.org/resources/presentations/

PM_{2.5}, NO₂ & health outcomes: A partial (!) review

	Diagnosis	Clinic visit	Hospitalization	Death
Asthma	Х	X	X	
Respiratory		X	X	X
COPD		X	X	X
Autism (ASD)	X			
Alzheimers			X	
Parkinsons			X	
Heart attack			X	X
Diabetes		X	X	X
All non- accidental death				X

What is a health outcome?



Health is not part of the pipeline review process

Shi, L et al (2016). Enviromental Health Perspectives, 124(1): 46-52.

Answers to health questions: Research, health assessments

Resolution #17-002 3/15/2017

RESOLUTION REQUEST THE FEDERAL ENERGY REGULATORY COMMISSION TO CONDUCT A HEALTH IMPACT ASSESSMENT OF THE PROPOSED WILLIAMS TRANSCO COMPRESSOR AT TRAP ROCK QUARRY IN FRANKLIN TOWNSHIP

NOW, THEREFORE, BE IT RESOLVED by the Board of Health of the Township of Franklin in the County of Somerset, State of New Jersey formally requests the Federal Energy Regulatory Commission to conduct a Health Impact Assessment of the proposed Williams Transco Compressor Station on the residents of the Township of Franklin.

	Maria
	Maximum
	Annual
TOC (Total)	12.2278 tpy
Methane	9.5599 tpy
Ethane	0.3335 tpy
VOC (Total)	2.3344 tpy
VOC (non-HAP)	1.1924 tpy
HAP (Total)	1.1420 tpy
Acetaldehyde	4.45E-02 tpy
Acrolein	7.11E-03 tpy
Benzene	1.33E-02 tpy
Biphenyl	
Butadiene (1,3-)	4.78E-04 tpy
Carbon Tetrachloride	
Chlorobenzene	
Chloroform	
Dichloropropene (1,3-)	-
Ethylbenzene	3.56E-02 tpy
Ethylene Dibromide	
Formaldehyde	7.89E-01 tpy
Heyane (n-)	
Methanol	
Methylene Chloride	
Methylnaphthalene (2-)	
Naphthalene	1.45E-03 tpy
PAH	2.45E-03 tpy
Phenol	
Propylene Onide	3.22E-02 tpy
Styrene	
Tetrachloroethane (1,1,2,2-)	1
Tohene	1.45E-01 tpy
Trichloroethane (1,1,2-)	
Trimethylpentane (2,2,4-)	┣
Vinyl Chloride	
Xylenes	7.11E-02 tpy
AJIENCO	see an opp

Hazardous air pollutants from burning gas

1578 lbs formaldehyde/year X

50% catalytic efficiency =

789 lbs/year

Spectra Energy Partners, Atlantic Bridge Project. Resource Report 9. Table B1Ai. (PDF pg 736).

(Compressor station) formaldehyde: Toxic & Cancer causing

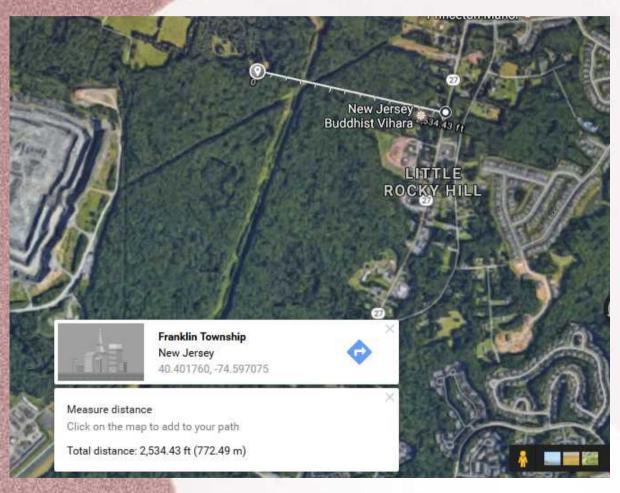
<u>Carcinogen</u>: 0.08 mcg/m³ <u>Toxicity</u>: 10-49 mcg/m³

<u>Toxicity symptoms</u>: Nasal & eye irritation; neurologic effects; Increased asthma, allergies, & eczema; decreased lung function

 -US Agency for Toxic Substances and Disease Registry http://www.atsdr.cdc.gov/
 -EPA IRIS database

Formaldehyde concentration near compressor stations

State/ID	County	Nearest infrastructure	Chemical	Concentration (µg/m ³)
PA-4083-003	Susquehanna	420 m from compressor	Formaldehyde	83
PA-4083-004	Susquehanna	370 m from compressor	Formaldehyde	7.6
PA-4136	Washington	270 m from PIG launch ^a	Benzene	5.7
PA-4259-002	Susquehanna	790 m from compressor	Formaldehyde	61
PA-4259-003	Susquehanna	420 m from compressor	Formaldehyde	59
PA-4259-004	Susquehanna	230 m from compressor	Formaldehyde	32
PA-4259-005	Susquehanna	460 m from compressor	Formaldehyde	34


C = chronic; A = acute; I = intermediate.

*Launching station for pipeline deaning or inspection tool.

PA-4259: 6200 hp Teel Compressor station

Macey et al. (2014) Environmental Health, v13, 82

~790m radius from proposed site

Measured Formaldehyde:

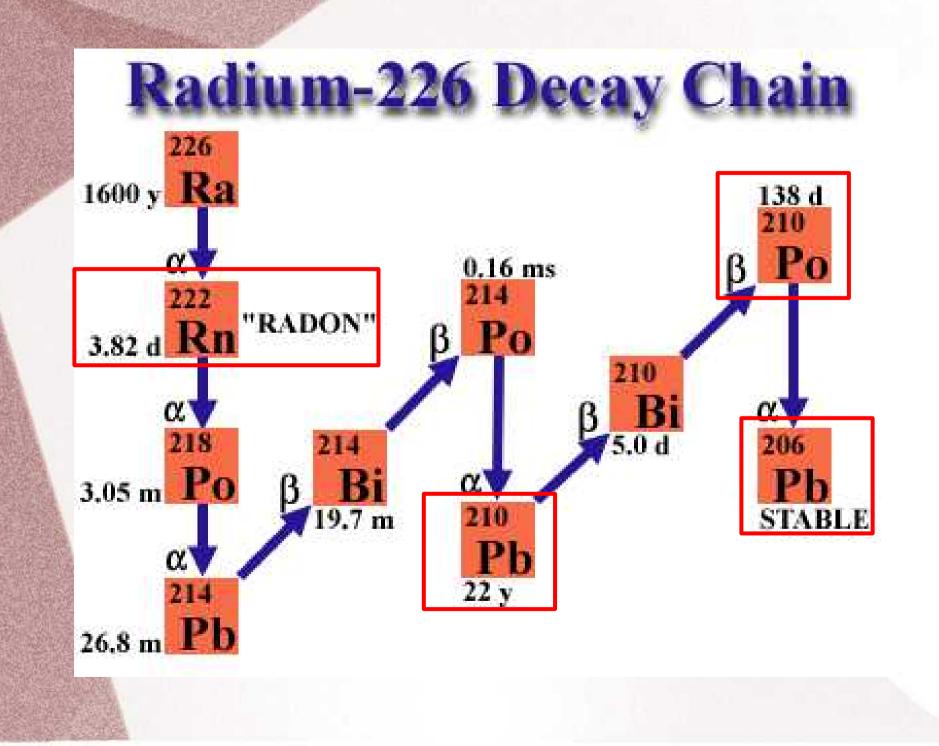
at 790m - 61 mcg/m³

Carcinogen:0.08 mcg/m³Toxicity:10-49 mcg/m³

762X Carcinogen threshold1.25-6X Toxicity threshold

Answers to health questions: Research, health assessments

Resolution #17-002 3/15/2017


RESOLUTION REQUEST THE FEDERAL ENERGY REGULATORY COMMISSION TO CONDUCT A HEALTH IMPACT ASSESSMENT OF THE PROPOSED WILLIAMS TRANSCO COMPRESSOR AT TRAP ROCK QUARRY IN FRANKLIN TOWNSHIP

NOW, THEREFORE, BE IT RESOLVED by the Board of Health of the Township of Franklin in the County of Somerset, State of New Jersey formally requests the Federal Energy Regulatory Commission to conduct a Health Impact Assessment of the proposed Williams Transco Compressor Station on the residents of the Township of Franklin.

Pennsylvania fracked gas: Radon

Sample ID	²²² Rn Activity (pCi/L)	Reservoir Name and Age	Lithology	Approximate Reservoir Depth (ft)
A-1	35	Marcellus Shale, Middle Devonian	Black shale	8,000
A-2	40	Marcellus Shale, Middle Devonian	Black shale	8,000
A-2, duplicate	45	Marcellus Shale, Middle Devonian	Black shale	8,000
A-3	79	Marcellus Shale, Middle Devonian	Black shale	8,000
A-3, duplicate	79	Marcellus Shale, Middle Devonian	Black shale	8,000
A-4	76	Marcellus Shale, Middle Devonian	Black shale	8,000
A-5	1	Marcellus Shale, Middle Devonian	Black shale	8,000
A-6	3	Marcellus Shale, Middle Devonian	Black shale	8,000
B-1	38	Marcellus Shale, Middle Devonian	Black shale	8,000
B- 2	1	Marcellus Shale, Middle Devonian	Black shale	8,000
B-3	4	Marcellus Shale, Middle Devonian	Black shale	8,000
С	30	Marcellus Shale, Middle Devonian	Black shale	8,000
D	65	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
Е	46	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
F	42	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
G-1	21	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
G-2	7	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
н	37	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
I	50	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
J	32	Bradford and Elk Groups, Upper Devonian	Sandstone	4,000
К	49	Bradford and Elk Groups, Upper Devonian	Sandstone	6,000

Pennsylvania Department of Environmental Protection. Technologically Enhanced Naturally Occuring Radioactive Materials (TENORM) Study Report, Rev. 1. May 2016.

Gas processing: Radioactive lead

Table 6-9. Compressor and Natural Gas Processing Plant Filter Media, Gamma Spectroscopy

Nuclide	Result
Ac-228	0.141
Bi-212	0.287
Bi-214	0.564
K-40	1.30
Pb-210	3,580
Pb-212	0.066
Pb-214	0.629
Ra-226	0.585
Ra-228	0.141
Th-232	0.125
U-235	-0.105
U-238	-14.7

Pennsylvania Department of Environmental Protection. Technologically Enhanced Naturally Occuring Radioactive Materials (TENORM) Study Report, Rev. 1. May 2016.

Gas pipeline "liquids": Metals and hazardous waste

ALGONQUIN GAS TRANSMISSION, LLC -M&R 17 (2007)

Reporting Year: 2007

Facility #1 : ALGONQUIN GAS TRANSMISSION, LL

Basic Facility Info 🖻

Handler ID	MAR000009993	
Facility Name	ALGONQUIN GAS TRANSMISSION, LLC -M&R 17	
Street Number	1183	
Address Line 1	SHAWMUT	
City	NEW BEDFORD	
State	MA	
Zip Code	02741	
County	PLYMOUTH	
113th Congressional D	istrict MA09: Massachusetts 9	
First NAICS Code	42471: Petroleum Bulk Stations and Terminals	
Current Owner	ALGONQUIN GAS TRANSMISSION, LLC	
Site Land Type	Private	

Generated Waste Basics 😢		
Page Number	1	
Waste Description	WASTE PIPELINE LIQUIDS WITH GREATER THAN 50 PPMS PCBS	
Form of Waste Category	Organic Liquids	
Form of Waste (Regularized)	Other organic liquid (specify in comments) - Organic Liquids	
Waste Source Category	Ongoing Production and Service Processes	
Waste Source Type (Regularize	d) Product and by-product processing - Production Processes	
Tons Generated Current Year	1.874	
Tons Managed	1.874	
Federal Waste (Yes/No)	Yes	
Tons Managed Onsite	0	
Tons Managed Offsite	1.874	
Include in National Report	Yes	

EPA Waste Codes for Generated Waste ?		
EPA Waste Code		
D001: Ignitable waste		
D005: Barium		
D007: Chromium		
D008: Lead		
D009: Mercury		

(Facility #1 : ALGONQUIN GAS TRANSMISSION, LL, Generated LIQUIDS WITH GR, EPA waste code: all)

http://www.rtknet.org/db/brs/brs.php? reptype=f&epa_id=MAR000009993&reporting_year=2007&database=brs&detail=3&datype=T

18 1912 N 199 18 1 144

Answers to health questions: Research, health assessments

Resolution #17-002 3/15/2017

RESOLUTION REQUEST THE FEDERAL ENERGY REGULATORY COMMISSION TO CONDUCT A HEALTH IMPACT ASSESSMENT OF THE PROPOSED WILLIAMS TRANSCO COMPRESSOR AT TRAP ROCK QUARRY IN FRANKLIN TOWNSHIP

NOW, THEREFORE, BE IT RESOLVED by the Board of Health of the Township of Franklin in the County of Somerset, State of New Jersey formally requests the Federal Energy Regulatory Commission to conduct a Health Impact Assessment of the proposed Williams Transco Compressor Station on the residents of the Township of Franklin.

What about electric compressor stations?

Air pollution is less Air pollution is still produced Assessment of electric compressor stations depends on scope of your vision

An example electric compressor station

Two electric compressors (15,000 & 8,000 hp)

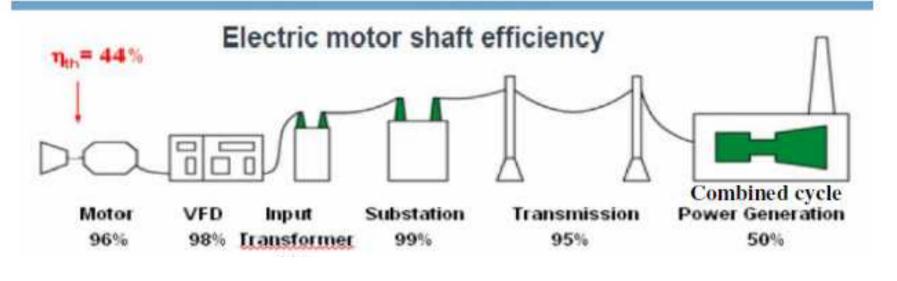
Blowdown valves, filter/separator units, discharge cooler, backup generator, auxiliary piping systems, air compressor system, water heating system,

Compressor/valve building, control building, variable frequency drive building, building for gas coolers,

Tennessee Gas Pipeline Co. Nov 2015. Environmental Report, Northeast Energy Direct Project. Resource Report 9 pg 1-43, 1-44

An example electric compressor station

Electric power substation and transformer Pipeline condensate storage tank Mainline valve with blowoff assembly Bidirectional pigging traps Stormwater retention pond, parking, outdoor storage


Tennessee Gas Pipeline Co. Nov 2015. Environmental Report, Northeast Energy Direct Project. Resource Report 9 pg 1-43, 1-44

Electric compressor station and substation

Drivers for Gas Compression: A comparison between reciprocating engines, turbines, and electric motors. Wayne Longer, Caterpillar Global Petroleum.

One part of the big picture...

True Carbon foot print ???

Drivers for Gas Compression: A comparison between reciprocating engines, turbines, and electric motors. Wayne Longer, Caterpillar Global Petroleum.

Blowdowns: Proposed releases

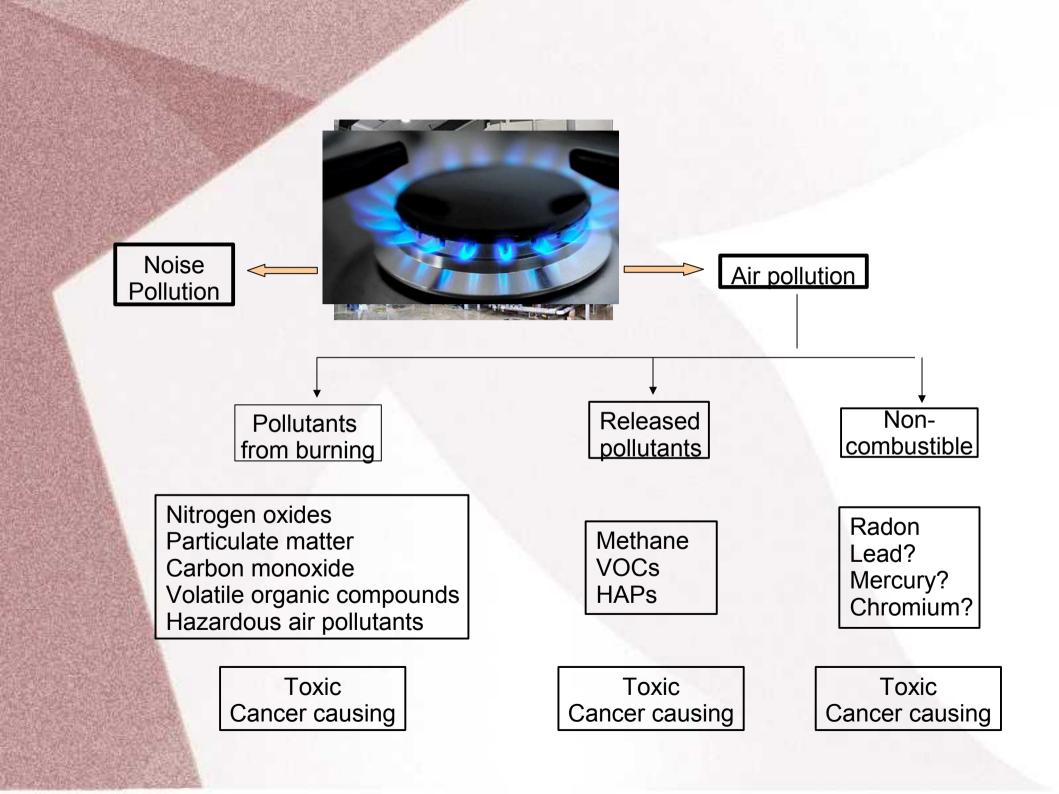
Annual Emissions

- 450 actual cf/compressor blowdown
 - 75 blowdowns/year
 - 2 compressors

67,500 acf/yr = 450 acf/compressor blowdown * 75 blowdowns/yr * 2 compressors 3,984,984 scf/yr = 67500 acf/yr * (964.7 psia / 14.7 psia) * (519.67%R / 577.67%R) 86.955 ton/yr = 3984984 scf/yr * 0.0436 lb/scf / 2000 lb/ton

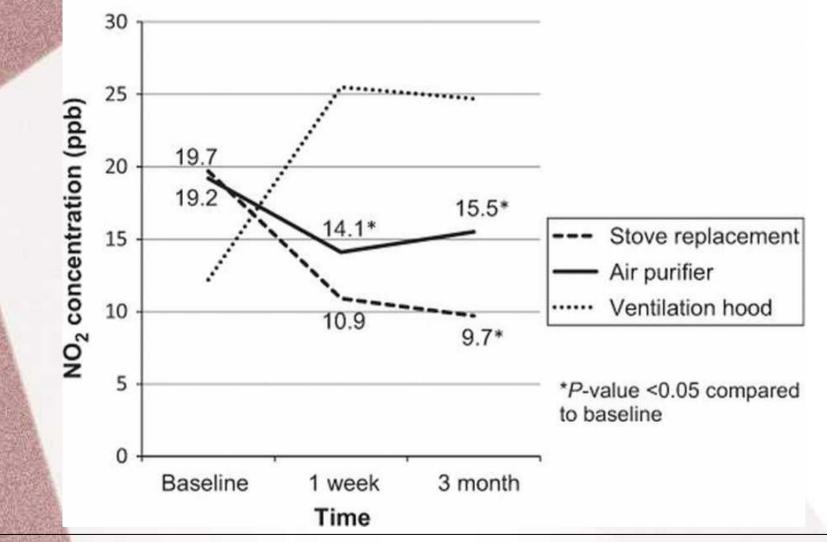
0.447 ton VOC/yr = 86.955 ton/yr * 0.5138 wt. % VOC 0.007 ton/yr HAPs/yr = 86.955 ton/yr * 0.0075 wt. % HAPs 0.069 ton CO2/yr = 86.955 ton/yr * 0.0799 wt. % CO2 81.869 ton CH4/yr = 86.955 ton/yr * 94.1517 wt. % CH4 2,046.80 ton CO2e/yr = 0.069 ton CO2/yr * (8186.926 ton CH4/yr *25 CO2e/CH4)

```
11.20 lb/yr n-Hexane = 86.955 ton/yr * 0 wt. % n-Hexane
1.23 lb/yr Benzene = 86.955 ton/yr * 0 wt. % Benzene
0.65 lb/yr Toluene = 86.955 ton/yr * 0 wt. % Toluene
```


Tennessee Gas Pipeline Co. Nov 2015. Environmental Report, Northeast Energy Direct Project. Resource Report 9, Attachment 9b, emissions calculations, pg 6.

Blowdowns: "Representative Gas"

Representative Gas Analysis M.W. b/lb-mol NG Federal HAPs Mol % Mass % 4.0026 Helium 0.02337% 0.00094 0.0057% Hydrogen 0.01927% 2 0158 0.00039 0.0024% 0.41907% 28.0135 0.11740 0.7114% Nitrogen Methane 96.84615% 16.0428 15.53680 94.1517% CO2 0.02995% 44.0098 0.01318 0.0799% Ethane non-VOC 2.48888% 30:0696 0.74840 4.5352% 0.13313% 44.0965 0.05871 0.3558% VOC Propane I-Butane 0.01042% 58.1234 0.00605 0.0367% 58 1234 0.00955 0.0579% n-Butane 0.01643% I-Pentane 0.00463% 72.1503 0.00334 0.0203% 72.1503 0.0143% n-Pentane 0.00327% 0.00236 VOCs 2,2-dimethylbutane 0.00045% 86.1754 0.00039 0.0023% 86.1754 0.00118 0.0071% 2-methyl Pentane 0.00137% 86.1754 0.0031% 3-methyl Pentane 0.00060% 0.00052 n-Hexane 0.00123% 86.1754 0.00106 0.0064% 0.5138% 0.0064% HAP MCY Pentane 0.00020% 84,1595 0.00017 0.0010% Benzene 0.00015% 78.1118 0.00012 0.0007% 0.0007% HAP


2-methyl hexane 0.00030% 100.2019 0.00030 0.0018% 2.3-dimethyl pentane 0.00010% 100.2019 0.00010 0.0006% 3-methyl hexane 0.00035% 100.2019 0.00035 0.0021% n-Heptane 0.00038% 100.2019 0.00038 0.0023% MCY C6/2,2 DM C6 98.1861 0.00015 0.0009% 0.00015% Toluene 0.00007% 92.1384 0.00006 0.0004% 0.0004% HAP 100.000% 16.502 100.000% 0.0075% HAPs

Tennessee Gas Pipeline Co. Nov 2015. Environmental Report, Northeast Energy Direct Project. Resource Report 9, Attachment 9b, emissions calculations, pg 6.

Ditch the gas stove?

Median NO₂ concentration by study arm: kitchen

Paulin, L. M. et al. "Home Interventions Are Effective at Decreasing Indoor Nitrogen Dioxide Concentrations." Indoor air 24.4 (2014): 416–424.

Odds of pediatric asthma: lower if you ventilate your stove

Ventilation of gas stove	No. cases	OR (95% CI)
No	269	1 Ref.
Yes	224	0.64 (0.43, 0.97)*

*P-value <0.05.

Kile ML, et al. A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health. 2014 Sep 2;13:71

For today:

Basics of how a compressor station works

What pollution comes out of a compressor station?

What are the health risks?

A few conclusions

Presence of risk is clear

Degree of risk is unclear

Independent, comprehensive health impact assessment and more data are needed